

Standard Model tests in charged-current semileptonic decays

Antonio Romero Vidal,

IGFAE, University of Santiago de Compostela, Spain

on behalf of the LHCb Collaboration

Towards the Ultimate Precision in Flavour Physics Warwick, 16-18 April 2018

Semileptonic B-hadron decays

• Semileptonic (SL) b-hadron decays provide powerful probes for testing the SM and for searching for physics beyond the SM (BSM).

- In the SM, mediated by a W boson. They involve only one hadronic current, parametrised in terms of scalar functions (form-factors).
- SL b-hadron decays involving electrons and muons expected to be free of BSM contributions.
 They are used to test the SM by measuring the CKM parameters |V_{ub}| and |V_{cb}|.

• Decays involving τ-v (semitauonic) sensitive to contributions BSM.

CKM unitary triangle: $|V_{cb}|$ and $|V_{ub}|$

- Precision determinations of $|V_{cb}|$ and $|V_{ub}|$ allow to test the SM:
- The length of the side of the unitary triangle opposite to the phase β proportional to the ratio $|V_{ub}|/|V_{cb}|$.
- The semileptonic transitions $b \rightarrow cl\nu$ and $b \rightarrow ul\nu$ (I=e, μ) used to determine $|V_{cb}|$ and $|V_{ub}|$: **inclusive and exclusive decays**.
- **B-factories** BaBar and Belle:
 - $B \rightarrow D^* l \nu$ (V_{cb}, exclusive)
 - $B \rightarrow D l \nu$ (V_{cb}, exclusive)
 - $B \rightarrow X_c l \nu$ (V_{cb}, inclusive)
 - $B \rightarrow \pi l \nu$ (V_{ub}, exclusive)
 - $B \rightarrow X_u | \nu$ (V_{ub}, inclusive)
- LHCb:
 - $\Lambda_{\rm b}^{0} \rightarrow p \mu \nu \, \text{vs} \, \Lambda_{\rm b}^{0} \rightarrow \Lambda_{\rm c}^{+} \mu \nu \, (|V_{\rm ub}|/|V_{\rm cb}| \, \text{exclusive})$

 $V_{ud}V_{ub}^{*}+V_{cb}V_{cd}^{*}+V_{tb}V_{td}^{*}=0$

Reconstruction method at B-factories

- $e+/e- \rightarrow \Upsilon(4S) \rightarrow B/B-bar$
- B-tag allows to constrain the momentum of the B-signal.
 - Hadronic B-tag: precise measurement of p_B. Good determination of q² and m_{miss}² (eff. 0.3%)
 - SL B-tag: weaker constraint on p_B (eff. ~1%)

18/04/2018

Results on $|V_{cb}|$ and $|V_{ub}|$

• HFLAV averages:

 $\begin{aligned} |V_{ub}| &= (3.50 \pm 0.13) \times 10^{-3} \text{ (excl.)} & |V_{cb}| &= (39.13 \pm 0.59) \times 10^{-3} \text{ (excl.)} \\ |V_{ub}| &= (4.52 \pm 0.20) \times 10^{-3} \text{ (incl.)} & |V_{cb}| &= (42.19 \pm 0.78) \times 10^{-3} \text{ (incl.)} \end{aligned}$

- Discrepancy between inclusive and exclusive measurements.
- New |V_{ub}| BaBar result on inclusive B→X_uev decays tend to agree with exclusive measurements [PRD 95, 072001 (2017)].
- Extraction of $|V_{ub}|$ and $|V_{cb}|$ depend on theory input (i.e.: form factors parameterisation, i.e. CLN vs BGL).
- A lot of recent theoretical work to understand this discrepancy.

Belle II prospects on |V_{cb}|

• Uncertainty on $|V_{cb}|$ exclusive measurements with 5 ab⁻¹ and 50 ab⁻¹ of Belle II data.

• $|V_{cb}|$ measured with 1-2% uncertainty at the end of Belle II data taking (50 ab⁻¹).

Belle II prospects on |V_{ub}|

• Uncertainty on $|V_{ub}|$ exclusive measurements with 5 ab⁻¹ and 50 ab⁻¹ of Belle II data.

	Statistical	Systematic	Total Exp	Theory	Total
	(reducible, irreducible)			
$ V_{ub} $ exclusive (had. tagged)					
711 fb^{-1}	3.0	(2.3, 1.0)	3.8	8.7 (2.0)	9.5(4.3)
5 ab^{-1}	1.1	(0.9, 1.0)	1.7	4.0(2.0)	4.4(2.6)
50 ab^{-1}	0.4	(0.3, 1.0)	1.1	2.0	2.3
$ V_{ub} $ exclusive (untagged)					
605 fb^{-1}	1.4	(2.1, 0.8)	2.9	8.7 (2.0)	9.1 (4.0)
5 ab^{-1}	0.5	(0.8, 0.8)	1.2	4.0(2.0)	4.2(2.4)
50 ab^{-1}	0.2	(0.3, 0.8)	0.9	2.0	2.2
$ V_{ub} $ inclusive					
$605 \text{ fb}^{-1} \text{ (old } B \text{ tag)}$	4.5	(3.7, 1.6)	6.0	2.5 - 4.5	6.5 - 7.5
5 ab^{-1}	1.1	(1.3, 1.6)	2.3	2.5 - 4.5	3.4 - 5.1
50 ab^{-1}	0.4	(0.4, 1.6)	1.7	2.5 - 4.5	3.0 - 4.8

• $|V_{ub}|$ measured with 2-4% uncertainty at the end of Belle II data taking (50 ab⁻¹).

$|V_{ub}|/|V_{cb}|$ at LHCb: $\Lambda_b^0 \rightarrow p\mu\nu$

- $\Lambda_b^0 \rightarrow p \mu \nu$ decays used to measure $|V_{ub}|/|V_{cb}|$. $\Lambda_b^0 \rightarrow \Lambda_c^+ \mu \nu$ decays used as normalisation channel.
- Experimental method → reconstruct the corrected mass:

 $M_{corr} = \sqrt{M_{p\mu}^2 + p_{\perp}^2} + p_{\perp}$

- Using the Λ_b^0 mass and direction of flight, $\mathbf{q}^2 = (p_{\Lambda b} p_p)^2$ can be estimated (up to a two-fold ambiguity).
- Events selected with $q^2 > 7 \text{ GeV}^2 (p\mu\nu_{\mu})$ and >15 GeV² ($\Lambda_c \mu \nu_{\mu}$) (both q^2 solutions above cut).
 - Highest rate, best resolution (~1GeV) and most precise Lattice calculations.

$|V_{ub}|/|V_{cb}|$ at LHCb: $\Lambda_b^0 \rightarrow p\mu\nu$

• Signal extraction from 1D fit to M_{corr}.

$$\frac{|V_{ub}|^{2}}{|V_{cb}|^{2}} = \frac{\mathcal{B}(\Lambda_{b}^{0} \to p\mu^{-}\overline{\nu}_{\mu})}{\mathcal{B}(\Lambda_{b}^{0} \to \Lambda_{c}^{+}\mu^{-}\overline{\nu}_{\mu})} R_{FF} \quad (R_{FF} \text{ from lattice})$$

$$\frac{B(\Lambda_{b}^{0} \to p\mu\nu)_{q^{2}>15GeV}}{B(\Lambda_{b}^{0} \to \Lambda_{c}\mu\nu)_{q^{2}>7GeV}} = (1.00 \pm 0.04(stat) \pm 0.08(syst)) \times 10^{-2}$$

$$\frac{|V_{ub}|}{|V_{cb}|} = 0.083 \pm 0.004(exp) \pm 0.004(lattice)$$

$$3,000$$

- Measurement compatible with exclusive measurements from B-factories.
- Measurement dominated by Λ_c⁺→pKπ branching fraction (~5%). Limiting factor for future measurements.

Next on $|V_{ub}|$ and $|V_{cb}|$ at LHCb Table 2: Values used for the projections of future $|V_{ub}|$ and $|V_{cb}|$ measurements

- $B_s^0 \rightarrow K^+ \mu \nu$ will be used to measure $|V_{ub}|$.
 - Normalisation $B_s^0 \rightarrow D_s^+ \mu \nu$. It can be used for $|V_{cb}|$ measurement.
 - Large $B_s^0 \rightarrow D_s^+ \mu \nu$ yield but...
 - Large feed-down from excited D meson decays with neutrals: $D_s^* \rightarrow D_s \gamma$.
- B⁺→ppµν.
 - Measured branching fraction (Belle) = (3.1^{+3.1}_{-2.4}± 0.7)x10⁻⁶ [PRD 89, 011101 (2014)]
- $B^+ \rightarrow \mu \mu \mu \nu$ sensitive to $|V_{ub}|$.
 - No helicity suppression due to the 2 muons from the virtual photon.
 - Expected branching fraction of the order ~10⁻⁸.

Measurement	Current World	Current	Projected	l Uncertainty
	Average $(\times 10^{-3})$	Uncertainty	Belle II	LHCb
	(Ref. [35])	(Ref. [35])	$5 \mathrm{ab^{-1}} 50 \mathrm{ab^{-1}} 8$	$fb^{-1} 22 fb^{-1} 50 fb^{-1}$

5.1%

5.1%

1.9%

1.8%

6.9%

3.4%

2.5%

1.3%

1.6%

3.0%

2.1%

1.2%

1.1%

3.4% 2.9%

2.1%

 $|V_{ub}|$ inclusive

 $|V_{ub}|$ exclusive

 $|V_{cb}|$ inclusive

 $|V_{cb}|$ exclusive

 $|V_{ub}|/|V_{cb}|$

 4.49 ± 0.23

 3.72 ± 0.19

 42.2 ± 0.8

 39.2 ± 0.7

 83.0 ± 5.7

Tests of LFU using semitauonic B-hadron decays

- In the SM, charged lepton flavours are identical copies of one another.
- Amplitudes for processes involving e, μ, τ must be identical up to effects depending on lepton mass (lepton universality).
- Observation of violations of lepton flavour universality would be a clear sign for new physics (NP).

$$B_{q} \left\{ \begin{array}{c} b \\ q \end{array} \right\} \xrightarrow{\tau} v \\ q \end{array} \left\{ \begin{array}{c} c \\ q \end{array} \right\} \xrightarrow{c} D^{(*)} + B_{q} \left\{ \begin{array}{c} b \\ q \end{array} \right\} \xrightarrow{\tau} v \\ q \end{array} \xrightarrow{c} D^{(*)} \\ q \end{array} \right\} D^{(*)}$$

- New physics could couple most strongly to the 3th generation (τ).
- Comparison between semitauonic (τ) and semimuonic (μ) decays are sensitive to NP, which could modify branching ratios and angular distributions.

SM predictions

• Ratios of branching fractions of semitauonic vs semimuonic B decays are sensitive to contributions from physics BSM.

$$R(D^{(*)}) = \frac{\mathcal{B}(B^0 \to D^{(*)}\tau\nu)}{\mathcal{B}(B^0 \to D^{(*)}\mu\nu)} \quad , \quad R(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi\tau\nu)}{\mathcal{B}(B_c^+ \to J/\psi\mu\nu)}$$

- R(D*) very clean SM prediction due to partial cancelation of form factors uncertainties in the ratio.
- $R_{SM}(D^*) = 0.252 \pm 0.003$
- Deviation from unity due to different τ/μ masses.
- $R(D^*)$, $R(J/\psi)$ enhanced/reduced in many BSM scenarios.

R(D*) and R(D) at Belle and BaBar

Experiment	Tag method	tau decay	Obs.	Value	Ref.
BaBar	Hadronic	τ→ℓνν	R(D)	0.440±0.058±0.042	PRL 109, 201802 (2012)
BaBar	Hadronic	τ→ℓνν	R(D*)	0.332±0.024±0.018	PRL 109, 201802 (2012)
Belle	Hadronic	τ→ℓνν	R(D)	0.335±0.064±0.026	PRD 92(7), 072014 (2015)
Belle	Hadronic	τ→ℓνν	R(D*)	0.293±0.038±0.015	PRD 92(7), 072014 (2015)
Belle	Semileptonic	τ→ℓνν	R(D*)	0.302±0.030±0.011	PRD 94(7), 072007 (2016)
Belle	Hadronic	τ→h⁻ν	R(D*)	0.270±0.035 ^{+0.028} -0.025	PRL 118, 211801 (2017)
Belle	Hadronic	τ→h⁻ν	P _τ (D*)	$-0.38\pm0.51^{+0.21}_{-0.16}$	PRL 118, 211801 (2017)

• BaBar and Belle have performed simultaneous analysis of R(D) and R(D*) using hadronic B-tagging. This introduce a correlation between the two measurements.

- Analyses assume isospin symmetry R(D⁰)=R(D⁺) and R(D^{*0})=R(D^{*+}).
- All $R(D^{(*)})$ measurements consistently above the SM expectation $R_{SM}(D^*) = 0.252 \pm 0.003$.
- 1-prong tau decays used to perform a measurement of the tau polarisation.

R(D*) at LHCb using $\tau \rightarrow \mu \nu \nu$ decays

- Difficult, due to missing kinematic constraints.
- B boost along z >> boost of decay products in B rest frame.
- The B momentum approximated by: $(\gamma \beta_z)_B = (\gamma \beta)_{D^* \mu} \Rightarrow (p_z)_B = \frac{m_B}{m(D^* \mu)}(p_z)$
- 18% resolution on p_B still good enough to preserve signal and background discrimination.
- 3D template fit to m_{miss}^2 , E_{μ}^* and q^2 : $R(D^*) = 0.336 \pm 0.027 \pm 0.030$
- Systematics dominated by the size of simulated control samples.

PRL 115, 111803 (2015)

Hadronic R(D*) at LHCb

- Measurement of R(D*) using 3-prong hadronic τ⁺→π⁻π⁺π⁻(π⁰)ν_τ decays.
- Most abundant background B→D^{*-}π⁺π⁻ π⁺(+neutrals) suppressed by requiring a significant displacement between the τ and B vertices.
- $B^0 \rightarrow D^{*-}\pi^+\pi^-\pi^+$ used as normalisation.

- Main remaining background due to $B \rightarrow D^{*-}$ DX decays, with $D \rightarrow \pi^{+}\pi^{-}\pi^{+}X$.
- Signal yield extracted from a 3D fit to q², τ decay time a BDT (includes kinematic and isolation variables).
- R(D*) = 0.285 ± 0.019(stat) ± 0.025(syst) ± 0.014(ext)
 A. Romero Vidal

arXiv:1711.02505

Hadronic R(D*) at LHCb: systematics

- Main systematic uncertainties due to:
 - Size of simulated sample: it will be reduced by producing larger samples.
 - Shape of the $B \rightarrow D^*DX$ backgrounds: scales with statistics.
 - $D_{(s)}^+ \rightarrow \pi^+\pi^-\pi^+X$ decay model. BESIII future measurement will help to significantly reduce this uncertainty. Also, most of the inclusive $D_{s^+} \rightarrow \pi^+\pi^-\pi^+X$ decays emit photons or $\pi^{0's}$. An upgraded ECAL would help very much in reducing this (the largest) background.
 - Branching fraction of normalisation mode $B^0 \rightarrow D^{*}\pi^+\pi^-\pi^+$ known with ~4% precision. Belle II can measure it precisely.
 - The situation is worse in the case of, i.e.: R(D⁰), where the $B^+ \rightarrow D^0 \pi^+ \pi^- \pi^+$ branching fraction is known with ~40% precision. 18/04/2018

Measurement of $R(J/\psi)$

- Same reconstruction (p_B estimation) method as in the muonic R(D*) measurement (τ→μνν).
- Main backgrounds:
 - $B_c^+ \rightarrow J/\psi \mu \nu$, $B_c^+ \rightarrow \psi(2S) \mu \nu$, $B_c^+ \rightarrow J/\psi D(\rightarrow \mu \nu X) X$.
 - Hadron misidentified as a muon.
 - combinatorial background (J/ ψ and μ not from same B).
- R(J/ψ) obtained from a 3D template fit, with form-factors obtained from a sample enriched in normalisation decays.
- Systematic uncertainties dominated by knowledge of form-factors and the size of the simulation samples.
- First evidence of the $B_c^+ \rightarrow J/\psi \tau \nu$ decay (3 σ).
- $R(J/\psi) = 0.71 \pm 0.17 \pm 0.18$ ($R_{SM}(J/\psi) \approx 0.25-0.28$)

Summary on R(Xc)

 R(D)/R(D*) combination BaBar/Belle/LHCb at 4.1σ from the SM.

Belle II prospects on R(D) and R(D*)

- Improve the precision on R(D) and R(D*) to the 2-4% level.
- Better control on backgrounds like $B \rightarrow D^{**} l \nu$, very important for these measurements.
- Perform measurements of τ and D* polarisation.

Belle II projection:

	5 ab ⁻¹	50 ab ⁻¹
R(D)	(6.0+-3.9)%	(2.0+-2.5)%
R(D*)	(3.0+-2.5)%	(1.0+-2.0)%
Ρ _τ (D*)	0.18+-0.08	0.06+-0.04

First uncertainty statistical and second systematic

LHCb prospects on R(X_c)

- LHCb can perform measurements of LFU not accessible at Belle II:
 - $R(\Lambda_{c}^{(*)}), R(J/\psi)$ (also $R(D_{s}^{(*)})$).
- Production fractions and efficiencies used to extrapolate the uncertainties.
- Precision in R(X_c) about 2-3% at the end of the Upgrade phase II (LHCb unofficial).
- Sensitivity to angular observables need to be studied.

Conclusions

- Study of semitauonic B decays at LHCb very challenging due to the missing neutrinos and no missing-mass constraint.
- LHCb is able to perform measurements on semitauonic B decays using $\tau \rightarrow \mu \nu \nu$ and $\tau^+ \rightarrow \pi^- \pi^+ \pi^ (\pi^0)\nu_{\tau}$ decays.
- The precision is comparable to that of Belle and BaBar.
- $R(J/\psi)$ measured for the first time (first evidence of $B_c^+ \rightarrow J/\psi \tau \nu$).
- Measurements of $R(\Lambda_c^{(*)})$, $R(J/\psi)$ and $R(D_s^{(*)})$ only possible at LHCb.
- Both Belle II and LHCb aim to measure R(D) and R(D*) with 2-3% precision.

BACKUP

Systematic uncertainties muonic R(D*)

Model uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	2.0
Misidentified μ template shape	1.6
$\bar{B}^0 \rightarrow D^{*+}(\tau^-/\mu^-)\bar{\nu}$ form factors	0.6
$\bar{B} \to D^{*+}H_c(\to \mu\nu X')X$ shape correction	s 0.5
$\mathcal{B}(\bar{B} \to D^{**} \tau^- \bar{\nu}_{\tau}) / \mathcal{B}(\bar{B} \to D^{**} \mu^- \bar{\nu}_{\mu})$	0.5
$\bar{B} \to D^{**} (\to D^* \pi \pi) \mu \nu$ shape corrections	0.4
Corrections to simulation	0.4
Combinatorial background shape	0.3
$\bar{B} \to D^{**} (\to D^{*+} \pi) \mu^- \bar{\nu}_{\mu}$ form factors	0.3
$\bar{B} \to D^{*+}(D_s \to \tau \nu) X$ fraction	0.1
Total model uncertainty	2.8
Normalization uncertainties	Absolute size $(\times 10^{-2})$
Simulated sample size	0.6
Hardware trigger efficiency	0.6
Particle identification efficiencies	0.3
Form factors	0.2
$\mathcal{B}(\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau)$	< 0.1
Total normalization uncertainty	0.9
Total systematic uncertainty	3.0

Systematic uncertainties hadronic R(D*)

Contribution	Value in %
$\mathcal{B}(\tau^+ \to 3\pi\overline{\nu}_{\tau})/\mathcal{B}(\tau^+ \to 3\pi(\pi^0)\overline{\nu}_{\tau})$	0.7
Form factors (template shapes)	0.7
au polarization effects	0.4
Other τ decays	1.0
$B \to D^{**} \tau^+ \nu_{\tau}$	2.3
$B_s^0 \to D_s^{**} \tau^+ \nu_\tau$ feed-down	1.5
$D_s^+ \to 3\pi X$ decay model	2.5
D_s^+ , D^0 and D^+ template shape	2.9
$B \to D^{*-}D^+_s(X)$ and $B \to D^{*-}D^0(X)$ decay model	2.6
$D^{*-}3\pi X$ from B decays	2.8
Combinatorial background (shape $+$ normalization)	0.7
Bias due to empty bins in templates	1.3
Size of simulation samples	4.1
Trigger acceptance	1.2
Trigger efficiency	1.0
Online selection	2.0
Offline selection	2.0
Charged-isolation algorithm	1.0
Normalization channel	1.0
Particle identification	1.3
Signal efficiencies (size of simulation samples)	1.7
Normalization channel efficiency (size of simulation samples)	1.6
Normalization channel efficiency (modeling of $B^0 \to D^{*-}3\pi$)	2.0
Form factors (efficiency)	1.0
Total uncertainty	9.1

Shape of $\Lambda_b^0 \rightarrow \Lambda_c^+ \mu^- \nu$ differential decay rate

- The measured $q^2 = (p(\Lambda_b) p(\Lambda_c))^2 = (p_\mu + p_\nu)^2$ distribution of $\Lambda_b^0 \rightarrow \Lambda_c^+ \mu^- \nu$ decays is compared with expectations from heavy-quark effective theory (HQET) and from unquenched lattice QCD predictions.
- Due to the spin of the Λ_b and Λ_c baryons, 6 form-factors needed to describe the decay. A full angular analysis needed to measure them.
- In the limit of infinite heavy quark (HQ) mass, all form factors reduced to a universal function, known as Isgur-Wise (IW), ξ_B(w).

$$\frac{d\Gamma(\Lambda_b^0 \to \Lambda_c^+ \mu^- \overline{\nu}_\mu)}{dw} = \frac{G_F^2 m_{\Lambda_b}^5 |V_{cb}|^2}{24\pi^3} K(w) \xi_{\Lambda_b}^2(w) \qquad w = \frac{m_{\Lambda_b}^2 + m_{\Lambda_c}^2 - q^2}{2m_{\Lambda_b} m_{\Lambda_c}}$$

• Different functional forms for the Isgur-Wise function are tested.

Shape of $\Lambda_b^{0} \rightarrow \Lambda_c^{+} \mu^{-} \nu$ differential decay rate

Need to subtract feed-down from higher resonances.

• Next step is to unfold the w and q² distributions.

Shape of $\Lambda_b^{0} \rightarrow \Lambda_c^+ \mu^- \nu$ differential decay rate

- 1. w distribution is then corrected by efficiency.
- 2. Isgur-Wise function expressed as a Taylor series expansion used to fit the w distribution (other functions are used). Two other functions used as well.

$$\xi_B(w) = 1 - \rho^2 (w - 1) + \frac{1}{2} \sigma^2 (w - 1)^2$$
, $\xi_B(w) = \left(\frac{2}{w + 1}\right)^{2\rho^2}$, $\xi_B(w) = \exp\left[-\rho^2 (w - 1)\right]$

3. The measured ρ^2 parameter is consistent with Lattice, QCD sum rules and relativistic quark models.

 $\xi(w)$ distribution

Shape	ρ^2	σ^2	correlation coefficient	$\chi^2/$ DOF
Exponential*	1.65 ± 0.03	2.72 ± 0.10	100%	5.3/5
Dipole*	1.82 ± 0.03	4.22 ± 0.12	100%	5.3/5
Taylor series	1.63 ± 0.07	2.16 ± 0.34	97%	4.5/4

ρ^2	Approach	Reference
1.35 ± 0.13	QCD sum rules	[22]
$1.2^{+0.8}_{-1.1}$	Lattice QCD (static approximation)	[23]
1.51	HQET + Relativistic wave function	[21]

18/04/2018

A. Romero Vidal

LHCb-PAPER-2017-016

Shape of $\Lambda_b^{\ 0} \rightarrow \Lambda_c^{\ +}\mu^{-}\nu$ differential decay rate

- The unfolded q² distribution can be compared with theoretical predictions.
- A comparison of the $d\Gamma/dq^2$ distribution with lattice QCD expectation shows an excellent agreement.

- A single form-factor fit in the z-expansion ([PRD92 (2015) 034503]) reproduces well the data, consisting with the static limit (infinite heavy quark masses).
- Further studies with a suitable normalisation channel will lead to a precise independent determination of |V_{cb}|.

